Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Global trends in river nitrogen yields reflect human distortion of the global nitrogen cycle. Climate change and increasing agricultural intensity are projected to enhance river nitrogen yields in temperate watersheds and impair downstream water quality. However, little is known about the environmental drivers of nitrogen yields in major Arctic rivers, which have experienced rapid climatic changes and are important conduits of nutrients and organic matter to the Arctic Ocean. Here we analyze trends in nitrogen yields in the six largest Arctic rivers between 2003 and 2023 and develop generalized additive models to elucidate the watershed characteristics and climatic processes associated with observed spatial and interannual variability. We found significant increases in dissolved organic nitrogen yield and/or declines in dissolved inorganic nitrogen yield in four of the six rivers. While temperature and precipitation, via their relationships to discharge, enhance dissolved nitrogen yields, we attribute the diverging trends to the responses of inorganic and organic nitrogen to temperature via effects on permafrost free extent. Spatially, we attribute differences in nitrogen yields across watersheds to differences in land cover and temperature. Shifts in the amount and composition of river nitrogen yields will impact the balance between primary productivity and heterotrophy in nitrogen limited coastal Arctic Ocean ecosystems. Results from this work highlight the importance of climate‐driven changes in temperature and precipitation on river nitrogen yields in large Arctic rivers and motivate further investigation into how permafrost loss and hydrological shifts interact to drive water quality and biogeochemical cycling in the region.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            ABSTRACT Research in geocryology is currently principally concerned with the effects of climate change on permafrost terrain. The motivations for most of the research are (1) quantification of the anticipated net emissions of CO2and CH4from warming and thaw of near‐surface permafrost and (2) mitigation of effects on infrastructure of such warming and thaw. Some of the effects, such as increases in ground temperature or active‐layer thickness, have been observed for several decades. Landforms that are sensitive to creep deformation are moving more quickly as a result, andRock Glacier Velocityis now part of the Essential Climate VariablePermafrostof the Global Climate Observing System. Other effects, for example, the occurrence of physical disturbances associated with thawing permafrost, particularly the development of thaw slumps, have noticeably increased since 2010. Still, others, such as erosion of sedimentary permafrost coasts, have accelerated. Geochemical effects in groundwater from trace elements, including contaminants, and those that issue from the release of sediment particles during mass wasting have become evident since 2020. Net release of CO2and CH4from thawing permafrost is anticipated within two decades and, worldwide, may reach emissions that are equivalent to a large industrial economy. The most immediate local concerns are for waste disposal pits that were constructed on the premise that permafrost would be an effective and permanent containment medium. This assumption is no longer valid at many contaminated sites. The role of ground ice in conditioning responses to changes in the thermal or hydrological regimes of permafrost has re‐emphasized the importance of regional conditions, particularly landscape history, when applying research results to practical problems.more » « lessFree, publicly-accessible full text available December 10, 2025
- 
            Key Points Modeled dissolved organic carbon export was 18.4 Tg C yr ‐1 (median) from 1982‐2019 for the six largest Arctic Rivers Proportional contributions of chromophoric to total dissolved organic carbon (CDOC & DOC) are positively correlated with water discharge Increasing discharge and shifting seasonality, independent of other factors, would have increased CDOC and DOC export from 1982‐2019more » « less
- 
            In contrast to fairly good knowledge of dissolved carbon and major elements in great Arctic rivers, seasonally resolved concentrations of many trace elements remain poorly characterized, hindering assessment of the current status and possible future changes in the hydrochemistry of the Eurasian Arctic. To fill this gap, here we present results for a broad suite of trace elements in the largest rivers of the Russian Arctic (Ob, Yenisey, Lena, and Kolyma). For context, we also present results for major elements that are more routinely measured in these rivers. Water samples for this study were collected during an international campaign called PARTNERS from 2004 through 2006. A comparison of element concentrations obtained for Arctic rivers in this study with average concentrations in the world’s rivers shows that most elements in the Arctic rivers are similar to or significantly lower than the world average. The mineral content of the three greatest rivers (Ob, Yenisey, and Lena) varies within a narrow range (from 107 mg/L for Yenisey to 123 mg/L for Ob). The Kolyma’s mineral content is significantly lower (52.4 mg/L). Fluxes of all major and trace elements were calculated using average concentrations and average water discharge for the 2004–2006 period. Based on these flux estimates, specific export (i.e., t/km2/y) for most of the elements was greatest for the Lena, followed by the Yenisey, Ob, and Kolyma in decreasing order. Element pairwise correlation analysis identified several distinct groups of elements depending on their sources and relative mobility in the river water. There was a negative correlation between Fe and DOC concentration in the Ob River, which could be linked to different sources of these components in this river. The annual yields of major and trace elements calculated for each river were generally consistent with values assessed for other mid-size and small rivers of the Eurasian subarctic.more » « less
- 
            Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
